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Società Italiana di Fisica
Springer-Verlag 2002

Quantum chemical construction of a reduced reaction
Hamiltonian and T1-relaxation and pure T2-dephasing rates
for the proton transfer in 3-chlorotropolone

R. Xu1,a, Y.J. Yan1, and O. Kühn2
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Abstract. Separating multidimensional problems into that of a relevant system which is coupled to a bath
of harmonic oscillators is a common concept in condensed phase theory. Focusing on the specific problem of
intramolecular proton transfer in an isolated tropolone derivative, we consider the reactive proton moving
in the plane of the molecule as the system and the remaining substrate normal modes as the bath. An
all-Cartesian system-plus-substrate Hamiltonian is constructed employing density functional theory. It is
then used to determine the temperature-dependent effective reduced reaction Hamiltonian and the state-
to-state dissipation rates induced via the system-substrate coupling up to the bi-quadratic order. The
important substrate modes for the T1-relaxation and the pure T2-dephasing rates, which are either intra-
or inter-well in nature, are identified numerically and analyzed physically with molecular details.

PACS. 31.70.Hq Time-dependent phenomena: excitation and relaxation processes, and reaction rates –
82.30.Qt Isomerization and rearrangement – 31.15.Ar Ab initio calculations

1 Introduction

A molecular Hamiltonian is the basic ingredient for any
dynamics simulation. Within the Born-Oppenheimer ap-
proximation the nuclear motions take place on an adia-
batic potential energy surface (PES), U(R), which in prin-
ciple should be evaluated on an ab initio level of quantum
chemistry. However, since U(R) is a function of the 3N−6
molecular degrees of freedom (DOF), its complete ab ini-
tio determination becomes practically impossible if there
are more than 3 or 4 atoms involved.

The development of approximate approaches makes
use of the fact that reaction dynamics quite often involves
large-amplitude motions of only a few atoms or modes
which are referred to as the reaction coordinates. The ma-
jority of atoms or modes are merely spectators compris-
ing the substrate and performing only small amplitude
vibrations around their equilibrium positions during the
reaction. Commonly, a reaction path is considered which
coincides with the steepest descent or minimum energy
path from the transition state. This path contains impor-
tant information on the chemical reaction such as the en-
ergetics of different conformations and the way they are
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connected [1,2]. However, in view of dynamics, restrict-
ing a reaction to only a one-dimensional reaction coordi-
nate without incorporating its correlation with the other
3N − 7 DOF of the substrate, may not be a valid approx-
imation.

In a classic paper, Miller et al. [3] derived a reaction
path Hamiltonian which includes the effect of the sub-
strate on the reaction dynamics. Specifically, they defined
local normal modes orthogonal to the reaction path which
implies the validity of a second order Taylor expansion.
An extension in terms of a reaction surface defined by
several internal coordinates was also given [4,5]. Here, the
effective Hamiltonian for the reaction surface takes the
traditional Wilson form [6]. The problem of a formulation
in terms of internal or minimum energy path coordinates
is that the kinetic energy operator contains the couplings
among the various DOF due to Coriolis-type interactions
and the curvature change along the reaction path. This
type of kinetic energy operator is difficult to calculate
numerically especially in intramolecular proton transfer
(PT) systems where the reaction paths are sharply curved.

An alternative has been shown to be a Cartesian reac-
tion Hamiltonian (CRH) description [7]. Here, the Carte-
sian coordinates of reactive atoms/modes are chosen as
the system, while those of the substrate are transferred
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Fig. 1. Most stable isomer (E1) of 3CTR as calculated us-
ing the DFT/B3LYP method with the Gaussian basis set 6-
31+G(d,p). The coordinate system for defining the reaction
surface for PT is also shown (see text).

into normal modes with reference to a specific molecular
configuration. The Cartesian form of the Hamiltonian has
the advantage that the kinetic energy operator is diago-
nal and all couplings are in the potential. Nevertheless, the
CRH has only recently been implemented numerically at
an ab initio level for polyatomic molecular systems [8–10].
Note that this approach is closely related to the Carte-
sian form of the modified Shepard interpolation method
which has been used to calculate the tunnel splitting in
malonaldehyde recently [11].

For multidimensional quantum dynamics simulation,
the (multiconfiguration) time-dependent self-consistent
field method [12–16] for solving the Schrödinger equation
has shown to be practical [17–20]. On the other hand, the
CRH resembles the generic system-bath Hamiltonian that
is widely used in the theory of condensed phase dynam-
ics [21–24]. This makes it possible to simulate the dynam-
ics via reduced density matrix theory in terms of quan-
tum dissipation. This approach was recently exploited by
Kühn and coworkers [25–27]. In their work, the reduced
reaction PES was constructed for the PT in thiocetylace-
tone as a parameterized function based on some ab initio
evaluated sampling points. The effect of substrate DOF
was taken into account in terms of the interaction spec-
tral density which was assumed to be of the empirical
ohmic form [23] with a cut-off frequency typical for the
low frequency molecular vibrations [25–27].

In the present work, a reduced description will be
adopted as well but based on an fully quantum chemi-
cally constructed CRH in the ground electronic (S0) state
for the correlated system-plus-substrate PT dynamics in
3-chlorotropolone (3CTR), see Figure 1. Tropolone and its
derivatives have attracted considerable attention [28–34].
There is experimental evidence that the PT in these sys-
tems is not just a simple motion of the proton. Certain
collective motions of heavy atoms of the molecular frame
play an important role as well, e.g. for the tunnelling dy-
namics. To identify these collective substrate motions at
a molecular level and to correlate them with their role in
the PT constitutes the main purpose of this work.

In contrast to the experiments on tropolone deriva-
tives in which the electronic spectroscopies such as flu-
orescence excitation and hole-burning are measured and
the PT is identified via its effects on certain collective nor-
mal modes [28–34], this work examines the PT motion on
the electronic ground state surface which is accessible by
ultrafast mid-IR vibrational spectroscopy [35–37] directly.
More specifically, the reactive proton’s (x, y) coordinates
in the 3CTR molecular plane will be chosen as the reduced
reaction system. The remaining substrate Cartesian coor-
dinates, including the proton’s z-coordinate, will be trans-
formed into a set of normal modes with reference to a cho-
sen molecular configuration and considered as the bath.
Mode mixing will occur for the substrate as the molecule
deviates from the reference configuration. The quantum
chemical construction of the all-Cartesian system-plus-
substrate Hamiltonian will be outlined in Section 2. The
resulting total Hamiltonian in a reduced dynamics descrip-
tion will then be partitioned into coherent (deterministic)
and incoherent (stochastic) parts. The former which is also
called the reduced reaction Hamiltonian will be detailed in
Section 3. It consists of the bare reaction Hamiltonian, the
substrate’s (bath) reorganization energy which effectively
leads to the minimum energy reaction path, and the bath
thermal ensemble average of the system-substrate inter-
action which is temperature-dependent. The incoherent
or stochastic system-substrate coupling will be described
in Section 4 in terms of the substrate’s interaction spec-
tra. As the coupling is considered up to the second order
in the substrate DOF, the interaction spectra will be ana-
lyzed in terms of the one-phonon and two-phonon coupling
strengths for individual substrate modes. Using quantum
dissipation theory as outlined in Appendix A, the effects
of incoherent system-substrate interaction will further be
expressed in terms of Bloch’s state-to-state T1-relaxation
and pure T2-dephasing rates in Section 5. By virtue of
the quantum chemical CRH construction, we can estab-
lish the correlation between the molecular patterns of the
dominant substrate normal modes and their role for the
T1-relaxation and the pure T2-dephasing, thereby distin-
guishing inter-well and intra-well processes.

2 Quantum chemical construction
of a system-plus-substrate Hamiltonian

2.1 General formulation

Consider an intramolecular PT reaction in a large poly-
atomic molecule. Here, the separation between system
DOF and substrate modes is intuitively clear since only a
specific proton performs large amplitude anharmonic mo-
tions; the other atoms/modes are well approximated in
terms of harmonic oscillators [9] and can be treated as a
bath in the reduced description as will be shown subse-
quently. Let us denote the Cartesian coordinates for the
reactive and the substrate modes in terms of vectors X
and Q, containing Nr and 3N − Nr elements, respec-
tively. Here, N is the number of atoms in the molecule.
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The all-Cartesian system-plus-substrate PES is defined by
the first terms of a Taylor expansion with respect to small
deviations of the substrate coordinates at a given value of
the reaction coordinate [7]

U(X; Q) ≈ U0(X) + UT
1 (X)δQ +

1
2
δQTU2(X)δQ. (1)

Here, the superscript T denotes the transpose, δQ ≡
Q−Q0 with Q0 being the reference substrate configura-
tion that will be specified later, and U0(X) ≡ U(X; Q0).
The (force) vector U1 and the (Hessian) symmetric ma-
trix U2 are, respectively, the first- and the second-order
derivatives of U(X; Q) with respect to Q and evaluated
at the chosen Q0. Note that equation (1) in general does
not conserve the total angular and linear momenta of the
molecule [3].

The construction of the all-Cartesian PES U(X; Q)
[Eq. (1)] involves the following steps:

(i) quantum chemical determination of the minima and
the saddle points on the PES. They amount to the
reactant, the product, and the transition state con-
figurations and will be used to identify suitable re-
action X and substrate Q coordinates. One of the
stationary configurations is chosen as the reference
{X0; Q0} for both the reaction and substrate coordi-
nates;

(ii) evaluation of the PES U(X; Q) [Eq. (1)] in terms
of {U0(X),U1(X),U2(X)} at each point on a speci-
fied Nr-dimensional X-grid with the chosen reference
substrate configuration Q0;

(iii) transformation of the substrate Cartesian coordinate
Q to the normal mode coordinates q ≡ S−1δQ with
respect to a reference value of the reaction coordinate
Xref , which in principle can be arbitrary [7].

In this work Xref is set to be equal to X0. The effect of
different choices for Xref and the more elaborated flexible
substrate reference [7] in which Q0 = Q0(X) depends in
the system coordinates will be discussed in Section 6 and
investigated elsewhere.

To proceed, let us denote

F(X) ≡ STU1(X), (2)

G(X) ≡ ST[U2(X)−U2(X0)]S. (3)

Notice that the transformation matrix S defines the nor-
mal modes of the substrate at X0 only, i.e.

U′′ ≡ STU2(X0)S ≡ diag(ω2
1 , ω

2
2, ...), (4)

is diagonal and positive. Here, ωj is the substrate normal
mode frequency when the reaction coordinate is at X0.
Since the chosen reference coordinate X0 is a stationary
point, we have U1(X0) = F(X0) = 0. In general, at other
values of X, F(X) 6= 0 and G(X) is non-diagonal.

To avoid the non-physical mixing of the substrate’s low
frequency vibrations and the molecule’s overall motions,
we shall further project out the six DOF for translations
and rotations. This can be done, as suggested in refer-
ences [3,7], by considering infinitesimal overall rotations

Table 1. Relative energies, dipole moments and some geo-
metrical parameters of the two isomers (E1 and E2) and the
transition state (TS) of 3CTR calculated by the DFT/B3LYP
method using a 6-31+G(d,p) basis set. Values within paren-
theses are results from a MP2/6-31+G(d, p) calculation.

E1 TS E2

E (cm−1) 0(0) 1875(2044) 258(275)
|µ| (Debye) 4.55(5.56) 4.74(5.92) 4.12(5.06)
rHO1 (Å) 1.80(1.82) 1.22(1.22) 0.99(0.99)
rHO2 (Å) 0.99(0.99) 1.24(1.24) 1.78(1.80)
rO1C1 (Å) 1.25(1.26) 1.29(1.30) 1.33(1.34)
rO2C2 (Å) 1.34(1.34) 1.29(1.30) 1.25(1.27)
rO1O2 (Å) 2.49(2.50) 2.30(2.31) 2.48(2.50)

and translations. By doing this we neglect the effects of
rotation-vibration coupling which is reasonable in view of
the application to the PT in a large molecule.

The correlated system-plus-substrate CRH thus assu-
mes the form

HT = H0 + hB +HSB, (5)

H0 =
Nr∑
n=1

P 2
n

2Mn
+ U0(X), (6)

hB =
1
2

N ′∑
j=1

(p2
j + ω2

j q
2
j ), (7)

HSB = FT(X)q +
1
2
qTG(X)q. (8)

Here, Nr and N ′ = 3N −Nr − 6 are the number of DOF
of the reaction coordinates (X) and the harmonic sub-
strate (q), respectively.

2.2 Application to proton transfer
in 3-chlorotropolone

We are now in the position to apply the CRH approach
to the intramolecular PT in 3CTR, cf. Figure 1. First, the
quantum chemical geometry optimization was carried out
using the DFT(B3LYP)/6-31+G(d,p) and the MP2/6-
31+G(d,p) method. Both predict planar structures for
the two stable isomers and the transition state of the
PT reaction. The relative energies, dipole moments and
some geometrical parameters of the stationary configura-
tions are listed in Table 1. Obviously, the less expensive
density functional calculation reproduces the MP2 re-
sults reasonably well. All calculations are performed using
Gaussian98 [38].

The reaction coordinate is chosen as X = (x, y) for the
position of the reactive H atom in the molecular plane.
Here, the x-axis is directed from O1 at 70◦ to the bond
O1–C1 (Gaussian98 standard orientation, cf. Fig. 1). We
use the most stable configuration E1 (cf. Fig. 1) as the
reference X0 = (x0, y0) and also for defining Q0. The CRH
[Eqs. (5–8)] is determined with the DFT/B3LYP method
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and the Hessian is calculated on the Hartree-Fock level of
theory. The normal modes of the substrate are defined for
the reference configuration (x0, y0) of E1 (cf. Fig. 1) and
their frequencies are calculated according to equation (4).
In the present application, the number of atoms in 3CTR
is N = 15, i.e. the number of DOF is Nr = 2 for the
reaction coordinate and N ′ = 37 for the substrate. The
mass in equation (6) is that of the proton, Mn = MH.

In the following, we adopt a Bloch-Redfield type of
reduced description to the PT in 3CTR as outlined in
Appendix A. Here, the N ′ = 37 substrate modes are
treated as the intramolecular bath that is assumed to be
Markovian. In the reduced description we need to iden-
tify the effective or reduced reaction Hamiltonian H [cf.
Eq. (34)] and the Redfield tensor R [Eq. (36)]. The for-
mer governs the coherent PT dynamics, while the latter
controls dissipation induced via the system-substrate in-
teraction which is treated as a stochastic variable. The
reduced reaction Hamiltonian H will be specified in Sec-
tion 3 in terms of the bare reaction Hamiltonian [Eq. (6)],
the substrate-bath reorganization energy which effectively
leads to the minimum energy reaction path, and the ther-
mal ensemble average of system-substrate interaction. The
dynamical effects of system-substrate coupling will be first
treated in Section 4 in terms of the substrate’s interaction
spectra, and then in Section 5 in terms of their induced
state-to-state T1-relaxation and pure T2-dephasing rates.
The substrate normal modes and their interaction with
the PT reaction system will be analyzed on a molecular
level.

3 Effective reaction system Hamiltonian

In a reduced description, the effective reaction Hamilto-
nian in the presence of a substrate (bath) is not equal to
the bare potential H0 [Eq. (6)], but we have

H =
Nr∑
n=1

P 2
n

2Mn
+ V (X), (9)

with the effective potential given by

V (X) = U0(X) + Vreor(X) + 〈HSB〉 · (10)

Here, U0(X) is the bare potential [cf. Eq. (6)], while
Vreor(X) is the reorganization energy that compensates
the energy renormalization induced by HSB [Eq. (8)]. It
can be shown that in certain well-defined limits such as
high-temperature or Markovian regime [23,40,41], the ef-
fects of the second-order system-bath correction on both
the canonical thermal equilibrium and the reduced dy-
namics may be accounted for by the Caldeira-Leggett form
of Vreor. The expression for Vreor can be obtained by find-
ing the minimum of the system-plus-substrate potential
for a given X, that is [23]

Vreor(X) = −1
2
FT(X)[G(X) + U′′]−1F(X). (11)

1 2
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Fig. 2. The effective PES V (x, y) [Eq. (10)] at T = 200 K
for the PT reaction of 3CTR for the reference configuration
being set to E1 (cf. Fig. 1). The contour lines go from 0
to 10 000 cm−1.

In equation (10), 〈HSB〉 denotes the contribution of the
substrate ensemble average of HSB [Eq. (8)]. This term
enters the effective Hamiltonian in first order perturbation
theory (mean field term) [24]. It reads (~ ≡ 1)

〈HSB〉 ≡ TrB[HSBρ
eq
B (T )] =

1
2

∑
j,k

Gjk(X)〈qjqk〉

=
N ′∑
j=1

Gjj(X)
2ωj

(
n̄j +

1
2

)
· (12)

Here, ρeq
B (T ) = e−βhB/trBe−βhB ; with β = 1/(kBT ), is

the canonical thermal ensemble density operator of the
harmonic substrate [Eq. (7)], and

n̄j = [exp(βωj)− 1]−1, (13)

is the thermal occupation number of the jth harmonic
substrate mode. In deriving equation (12), we used the
identities 〈qj〉 = 0 and 〈qjqk〉 = ω−1

j (n̄j + 1/2)δjk for the
independent harmonic substrate (bath) model [Eq. (7)].
Note that 〈HSB〉, and hence, V (X) andH are temperature
dependent. In case of the linear coupling approximation:
G(X) = 0, equation (12) is zero and equation (11) reduces
to the standard Caldeira-Leggett form of reorganization
energy [23,39].

Figure 2 shows the quantum chemically constructed
(cf. Sect. 2) effective (or reduced) PES, V (X) ≡ V (x, y)
[Eq. (10)] at T = 200 K for the PT reaction of 3CTR.
Note that at the reference E1 configuration X0 = (x0, y0)
(cf. Fig. 1) V (x0, y0) = U0(x0, y0) is independent of tem-
perature and will be used to define the zero of energy.

In Figure 3 we plotted a cut through the effective PES
along the x-direction and at y = y0 for different temper-
atures [T = 200 K (solid curve), T = 0 K (dotted curve)
and 400 K (dashed curve)]. It can be seen that the reduced
system potential barrier height is enhanced as the temper-
ature increases. This may be considered as a hint that as
the incoherent substrate motion increases, the coherent
PT rate is effectively reduced.

In Figure 4 we show the energies of the five low-
est vibrational eigenstates εa of equation (9) as a func-
tion of temperature. The corresponding eigenfunctions at
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Fig. 3. The reaction path projected from the PES V (x, y) (cf.
Fig. 2) onto the x-coordinate for y = y0 at 0 K (dotted line),
200 K (solid line) and 400 K (dashed line).

Fig. 4. The five lowest vibrational eigenenergies εa of the re-
duced reaction system [Eq. (9)] as functions of temperature.

T = 200 K are given in Figure 5. The diagonalization
of the reduced reaction Hamiltonian H [Eq. (9)] was car-
ried out using the DVR method [42,43]. It is evident that
{|0〉, |2〉, |4〉} are localized mostly in the E1-potential well,
while {|1〉, |3〉} are mostly localized in the E2-potential
well.

At this point it should be noted that the significance
of the eigenstates shown in Figures 4 and 5 depends on a
number of factors. PT reactions are often described in two
limits [24]: in the adiabatic case the proton is moving and
the substrate atoms can adjust to the proton’s position in-
stantaneously, i.e. they relax to the respective minimum
energy configuration. In the frozen substrate limit only
the proton is moving while the substrate is fixed, e.g., at
the most stable configuration. In the present case U0(x, y)
corresponds to the frozen substrate potential while V (x, y)
– apart from the mean field term – describes the adia-
batic case. In other words, the reorganization energy is
just the energy which is required to relax the substrate
atoms to the equilibrium configuration according to the
actual value of (x, y). Therefore, the eigenstates of H are
in accord with the assumption one usually does for the
adiabatic limit of PT. Going beyond this limit would im-
ply that the excitation of the substrate modes is explicitly
taken into account, i.e. the present eigenstates would in
principle mix with the vibrational excitations of the sub-
strate modes. In the following section we follow a different
strategy and account for the interaction with the substrate
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Fig. 5. The five lowest localized vibrational eigenstates of
equation (9) at 200 K.

by using second order perturbation theory. Finally, it must
be emphasized that our reasoning, of course, relies on the
validity of the harmonic approximation for the substrate
atoms for all values of the reaction coordinate. Intuitively,
one expects that anharmonicities become the more impor-
tant the farther one moves away from the fixed reference
point (x0, y0). Thus the energies and rates calculated be-
low which are related to the states localized close to E1,
{|0〉, |2〉, |4〉} will be more reliable than those referring to
states {|1〉, |3〉}. In principle this limitation can be over-
come by using substrate atom configurations for the cal-
culation of the forces and the Hessian which are adapted
to the actual position of the proton [7]. Respective work
for tropolone derivatives is in progress in our groups.

4 Substrate interaction spectra

4.1 Stochastic model

The dynamics of the reaction subsystem is not only
governed by the reduced effective reaction Hamiltonian
[Eq. (9)], but also influenced by the system-substrate in-
teraction. For a large polyatomic molecule, the substrate
has many DOF (q) and may be approximated as a dissi-
pative bath. The system-bath interaction, after removing
the thermal bath ensemble average, is [cf. Eqs. (8, 12)]

H ′ ≡ HSB − 〈HSB〉

=
∑
j

Fj(X)qj +
1
2

∑
j,k

Gjk(X)[qjqk − 〈qjqk〉]. (14)

Here, Fj(X) and Gjk(X) denote the elements of the vector
F(X) and matrix G(X), respectively. Within second or-
der perturbation theory the effect of the system-substrate
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interaction on the reaction dynamics is accounted for by
the correlation function

〈H ′(t)H ′(0)〉 ≡ 〈eihBtH ′e−ihBtH ′〉. (15)

The above equation also defines H ′(t) as a stationary
stochastic operator via its dependence on the substrate
modes, q(t) = eihBtqe−ihBt. Here, hB is the substrate
Hamiltonian [Eq. (7)].

In order to obtain a suitable form ofH ′ let us introduce
the dimensionless polynomial operator in the reaction co-
ordinate X = (x, y) space

Wα ≡ (MHω0)(αx+αy)/2(x− x0)αx(y − y0)αy (16)

with α ≡ (αx, αy) and αx, αy = 0, 1, ... Here, MH is the
proton mass and ω0 a frequency scaling parameter which is
set to 1 500 cm−1, i.e. about the transition frequency ω20.
Using this expansion we have

Fj(X) ≡
∑
α

fαjWα, (17)

Gjk(X) ≡
∑
α

gαjkWα. (18)

We can thus express H ′ [Eq. (14)] in the following form:

H ′ ≡
∑
α

Wαφα, (19)

with the generalized Langevin force given by

φα ≡
∑
j

fαjqj +
1
2

∑
j,k

gαjk[qjqk − 〈qjqk〉] · (20)

and 〈qjqk〉 = ω−1
j (n̄j + 1/2)δjk. The parameters fαj and

gαjk defined in equations (17, 18) can readily be deter-
mined from the quantum chemistry calculation of Sec-
tion 2. Note that in the case of α = (0, 0), we have fαj = 0
and gαjk = 0.

4.2 Interaction spectra and coupling strengths

The effect of the bath (substrate) on the reduced reaction
dynamics can be expressed in terms of the bath interaction
spectra Cαα′(ω) [cf. Eq. (35)], which are defined as the
Fourier transform of the Langevin force-force correlation
function:

Cαα′(ω) ≡
∫ ∞
−∞

dt eiωt〈φα(t)φα′(0)〉 · (21)

Note that in the present notation [cf. Eqs. (16, 19)] both
Cαα′ and φα have units of a frequency. It can be shown
easily that Cαα′(ω) is real and if α = α′, it’s positive as
well. Further the detailed-balance condition holds:

Cα′α(−ω) = e−βωCαα′(ω). (22)

As the generalized Langevin force φα [Eq. (20)] contains
both, linear and quadratic terms in the substrate modes,
we can express Cαα′(ω) as the sum of its one-phonon C(1)

αα′

and two-phonon contributions. For the latter one can dis-
tinguish the so-called pump-pump C

(+)
αα′ and pump-dump

C
(−)
αα′ components. Thus we have

Cαα′(ω) = C
(1)
αα′(ω) + C

(+)
αα′(ω) + C

(−)
αα′(ω). (23)

By using equations (20, 21), together with some ele-
mentary algebra for independent harmonic oscillators we
obtain

C
(1)
αα′(ω) =

∑
j

Aαα′(j)[(n̄j + 1)δ(ω − ωj) + n̄jδ(ω + ωj)],

(24)

and

C
(+)
αα′(ω) =

∑
jk

Bαα′(j, k)[n̄jn̄kδ(ω + ωj + ωk)

+(n̄j + 1)(n̄k + 1)δ(ω − ωj − ωk)] , (25)

C
(−)
αα′(ω) = 2

∑
jk

Bαα′(j, k)(n̄j + 1)n̄kδ(ω − ωj + ωk). (26)

Here,

Aαα′(j) = πfαjfα′j/ωj, (27)

and

Bαα′(j, k) = πgαjkgα′jk/(4ωjωk). (28)

In the present notation both the one-phonon and the two-
phonon coupling strengths, Aαα′(j) and Bαα′(j, k), have
units of a frequency squared. They measure the specific
bath mode(s) coupling with the reduced PT system. The
two-phonon coefficient Bαα′(j, k) [Eq. (28)] also describes
the substrate mode-mixing (for j 6= k) and frequency
change (for j = k) as a consequence of the PT process (i.e.,
away from the reference configuration E1). Obviously,
A2
αα′(j) = Aαα(j)Aα′α′(j) and B2

αα′(j, k) = Bαα(j, k)
Bα′α′(j, k). The index α ≡ (αx, αy) determines the or-
der of the system coordinate operator [cf. Eq. (16)]. In
the following the expansion in equation (16) has been re-
stricted to terms for which αx+αy ≤ 2. For the interaction
strength one observes that the Aαα or Bαα with α = (1, 0)
and (0, 1) are usually larger than those with α = (2, 0),
(1, 1) and (0, 2).

In Table 2 we have listed the frequencies ωj , one-
phonon coupling strengths Aαα(j) [Eq. (27)], and degen-
erate two-phonon coupling strengths Bαα(j, j) [Eq. (28)]
for each of the 37 substrate normal modes. The non-
degenerate two-phonon coefficients Bαα(j, k) with j 6= k
are overall smaller than the degenerate ones and are not
shown here. It is convenient to arrange the substrate vi-
brations into in-plane and out-of-plane modes. They are
presented in the upper and the lower parts of Table 2,
respectively.
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Table 2. Substrate normal mode frequencies ωj and coupling strengths Aαα(j) and Bαα(j, j) [Eqs. (27, 28)]. The upper/lower
part shows the in-plane/out-of-plane modes. The strongest coupled modes shown in Figures 6–8 are highlighted.

j ωj Aαα(j) (cm−2) Bαα(j, j) (cm−2)

(cm−1) α = (1, 0) (0, 1) (2, 0) (1, 1) (0, 2) α = (1, 0) (0, 1) (2, 0) (1, 1) (0, 2)

1 3202 0.66 0.11 0.36 0.022 0.085 0.075 0.028 0.0 0.0 0.0

2 3193 2.6 14 0.62 0.053 1.7 0.84 0.030 0.002 0.003 0.0

3 3185 11 19 0.40 0.17 0.14 0.81 0.026 0.0 0.0 0.0

4 3175 66 55 0.060 1.2 0.75 0.062 0.037 0.0 0.001 0.0

5 1652 3.1×104 7100 630 1.1×104 520 1.6 70 0.15 0.85 0.078

6 1643 7300 6.3×104 3200 4700 2.1×104 35 6.7 0.36 1.6 0.35

7 1609 3.8×105 9.2×104 2200 1.1×104 1.3×104 84 22 1.6 4.2 1.7

8 1514 3.0×105 1.7×105 260 2.3×104 13 130 60 5.1 0.010 1.3

9 1506 1.9×105 8.5×104 2800 2000 3600 2.3 2.8 0.008 0.096 0.058

10 1425 5.3×105 3.1×105 4900 7400 1.0×104 130 6.8 0.018 0.21 1.0

11 1382 8.8×104 8.6×104 2700 8900 490 34 41 0.24 1.3 0.044

12 1343 1.4×105 1.3×105 7800 1900 62 230 11 0.18 1.6 32

13 1264 2.1×104 3.5×104 530 7400 1800 28 1.2 0.0 0.21 3.1

14 1239 1500 1.0×105 1100 1.7×104 9700 0.41 0.0 0.073 0.33 0.11

15 1129 5.4×104 1.9×105 710 4.5×104 1.6×104 160 180 1.9 5.7 3.9

16 1028 7.0×105 5.5×105 1.6×104 4100 1700 530 380 8.0 15 0.89

17 934 4.3×105 7.7×105 4000 2.1×104 2.7×104 930 1100 12 50 24

18 865 1.4×108 2.3×108 2.1×106 6.6×106 6.1×106 1.3×105 9.3×104 2100 3500 770

19 820 3.5×105 7.4×105 11 9.1×104 5.7×104 1500 2300 20 120 98

20 735 8.7×104 4.0×104 280 4 90 4.6×104 0.079 30 0.048 5.5 0.093

21 551 5.3×105 6.2×105 3.2×104 7300 4600 1.6×104 0.30 1400 1600 1.0

22 539 6.6×104 2000 2.8×104 1.9×105 6.0×104 200 33 8.0 0.60 0.38

23 402 1.5×105 7.7×105 2000 6.8×104 1.1×104 100 110 2.3 0.33 18

24 339 2800 1.5×105 1.9 6500 1400 7.4 35 3.9 26 2.0

25 273 1.9×105 1.8×105 5.7×104 1.1×105 1.5×105 3.1×104 1600 2500 1000 220

26 1013 0.27 0.45 0.004 0.017 0.011 4.5 0.93 0.018 0.0 0.047

27 980 0.19 0.36 0.002 0.017 0.011 7.8 0.18 0.065 0.010 0.043

28 912 0.20 0.35 0.003 0.009 0.010 82 120 5.0 1.0 9.3

29 803 0.008 0.015 0.0 0.0 0.0 8.0×106 5.2×106 2.1×105 1.0×105 2.1×105

30 764 0.43 0.70 0.005 0.019 0.030 7.2×104 4.6×104 1800 1100 2000

31 760 0.037 0.066 0.0 0.002 0.003 39 2.7 2.1 2.4 1.0

32 597 0.040 0.10 0.0 0.013 0.009 260 150 2.6 2.1 8.8

33 494 0.029 0.068 0.0 0.003 0.003 430 330 7.2 0.003 21

34 378 0.004 0.002 0.0 0.0 0.002 180 240 8.6 0.65 15

35 256 0.015 0.16 0.001 0.057 0.004 360 580 11 6.0 43

36 139 0.001 0.008 0.0 0.002 0.0 1.2×104 62 650 1000 23

37 84 0.0 0.001 0.0 0.0 0.0 1.3×105 1.3×104 4200 510 960

Some details of Table 2 are worth emphasizing: first,
the first four in-plane and the first two out-of-plane modes
involve largely the motions of non-reactive H atoms such
as CH stretching vibrations. They are of high frequencies
and rather localized. Thus these six localized modes have
rather small values of Aαα and Bαα. Second, the modes
j = 18 and 25 are of relatively large overall coupling
strengths among those of the in-plane type. In fact the
mode j = 18 has the strongest coupling strengths among
all the 37 substrate modes. As depicted in Figure 6, these
two important in-plane modes (j = 18 and 25) involve

relatively large bending motion of the two oxygen atoms
which promotes the PT. Third, the modes j = 29, 30,
36 and 37 are of relative large coupling strengths among
those of the out-of-plane type. The former two are shown
in Figure 7 and involve large amplitudes for the motion
of the reactive proton along the z-direction (out-of-plane
bending type). The latter two are shown in Figure 8 and
involve the out-of-plane motion of the two oxygen atoms
in opposite directions.

Table 2 reveals also some general trends: it is observed
that with a few exceptions, Aαα(j) > Bαα(j, j) for the
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Fig. 6. The in-plane substrate normal modes for (a) j = 18
and (b) j = 25.

Fig. 7. The out-of-plane substrate normal modes for (a) j = 29
and (b) j = 30.

Fig. 8. The out-of-plane substrate normal modes for (a) j = 36
and (b) j = 37.

in-plane modes, while Aαα(j) < Bαα(j, j) for out-of-plane
modes. Overall it is found that the in-plane one-pho-
non coupling strengths {Aαα} are much larger than their
out-of-plane counterparts while the two-phonon coupling
strengths {Bαα} are much less sensitive to the charac-
ter of the substrate modes. This behavior can be traced
back to the fact that the PT is essentially an in-plane mo-
tion and in particular the stable states are planar. There-
fore, for a fixed reference geometry the forces exerted on
the substrate upon proton motion will mostly act to dis-
tort the geometry in the plane of the molecule. On the
other hand, it is well-known that the frequency, for in-
stance, of the out-of-plane bending vibration with respect
to the hydrogen bond changes considerably during PT. In
the present case we have for the stationary points on the
fully relaxed potential surface: ωbend = 812 cm−1 (E1),
ωbend = 1 235 cm−1 (TS), and ωbend = 835 cm−1 (E2).
Thus it is to be expected that the modes with out-of-plane
bending character, such as mode 29, have the strongest
quadratic coupling strength.

In the next section, the most important in-plane and
out-of-plane substrate modes shown in Figures 6–8 will
further be examined in terms of their implications for the
state-to-state T1-relaxation and pure T2-dephasing rates
in the reduced description of the PT. We will demon-
strate that while both the one-phonon parameter Aαα
and the two-phonon parameter Bαα are responsible for
the T1-relaxation, only the latter plays an important role
in determining the pure T2-dephasing dynamics if the tem-
perature is not too low.
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Obviously, for the substrate interaction spectra [cf.
Eqs. (23–28)] the effect of a specific substrate mode on
the PT system depends not only on Aαα(j) and Bαα(j, j),
but also on the thermal occupation number n̄j . Further-
more, the delta-functions in equations (24–26) should be
understood as certain line shape functions of finite widths,
induced, for example, via rotational motion. In this work,
we use a simple Lorentz line shape with a width of 2 cm−1

to replace each of the δ-functions in equations (24–26)
in the positive frequency (ω > 0) domain. The obtained
Cαα′(ω > 0) is then used to construct Cαα′(ω < 0) em-
ploying the detailed-balance relation (Eq. (22)).

5 T1-relaxation and T2-dephasing

5.1 General remarks

So far we have discussed the various bath (substrate) mo-
des in terms of their coupling strengths Aαα′(j) [Eq. (27)]
and Bαα′(j, k) [Eq. (28)] and their contribution to the
system-substrate interaction spectra. In this section, we
shall discuss their relevance in terms of the phase and en-
ergy relaxation dynamics. In the Markovian limit, the sub-
strate interaction spectra evaluated in the previous section
can in principle be used to construct the complete Redfield
dissipation tensor R (cf. Appendix A) which accounts for
the effect of incoherent substrate interaction on the PT in
the reduced space [44–46].

In the following we will restrict the discussion to the
case of the Bloch approximation [Eq. (38)] where only the
secular terms Raa,bb and Rab,ab are retained. They have
a straightforward interpretation in terms of T1-relaxation
and the T2-dephasing rates, respectively [44,47,48]. Thus,
we provide a benchmark calculation of the T1- and T2-
rates based on the quantum chemical construction of the
system-plus-substrate Hamiltonian as described in the
previous section.

5.2 Formulation of T1- and T2-rate constants

Let us start with the state-to-state T1-relaxation rate for
the a ← b transition (a 6= b) denoted as γab1 ≡ −Raa,bb.
Here, a and b are two vibrational eigenstates of the re-
duced reaction system Hamiltonian H [Eq. (9)]. By using
equation (36), we obtain [46]

γab1 =
∑
αα′

Cαα′(ωS
ba)W ba

α W ab
α′ ; for a← b. (29)

Here,W ba
α ≡ 〈b|Wα|a〉 with the operatorWα being defined

in equation (16), ωS
ba = (εb−εa)/~ is the vibrational tran-

sition frequency of the reaction system, and Cαα′(ω) the
substrate interaction spectrum [Eq. (21)]. The detailed-
balance relation reads in the present case [44–46]

γba1 = e−βω
S
baγab1 . (30)

The Bloch T1-relaxation rate associated with |a〉 can be
defined as [24,44–49]

Γa ≡
∑
b6=a

γba1 . (31)

Next we turn to the T2-dephasing rate between two vi-
brational levels, γ̃ab2 ≡ Rab,ab. By using equation (36), we
obtain [24,46–49]

γ̃ab2 =
1
2

(Γa + Γb) + γab2 . (32)

Here, the first term is the T1-induced dephasing rate, while
the second term denotes the pure T2-dephasing rate and
can be expressed as [46]

γab2 =
1
2

∑
αα′

Cαα′(0)(W aa
α −W bb

α )(W aa
α′ −W bb

α′ ). (33)

Note that γab2 = γba2 . In the following, we are interested in
the case where the temperature is not too low such that
Cαα′(0) ≈ C(−)

αα′(0) [cf. Eqs. (23–26)]. In this case, the pure
dephasing stems almost exclusively from the degenerate
pump-dump (Rayleigh) contribution, i.e., the j = k terms
in equation (26) for C(−)

αα′ .
Equations (29, 33), together with formal results of the

previous sections, complete the theoretical formulation of
the quantum chemical construction of the Bloch-Redfield
reduced equations of motion for polyatomic molecular sys-
tems such as 3CTR. In the following calculations, the
summations in equations (29, 33) run over α, α′ = (0,1),
(1,0), (2,0), (0,2), and (1,1); i.e., we are retaining the
system-substrate interaction up to the second-order in the
system’s Cartesian-coordinates [cf. Eq. (16)]. The corre-
sponding coupling strengths of the various substrate nor-
mal modes were analyzed in Section 4.2 and are listed
in Table 2. By examining equations (29, 33), and equa-
tions (23–28), we conclude that the dissipation rates are
determined by the interplay between the following four
factors:

(i) the overlap between the states |a〉 and |b〉 which af-
fects the T1-rate via W ab

α [cf. Eq. (29)] and the pure
T2-rate via W aa

α −W bb
α [cf. Eq. (33)];

(ii) the substrate interaction strength parameters
Aαα′(j) [Eq. (27)] and Bαα′(j, k) [Eq. (28)], which
were analyzed in Table 2 with the important
substrate modes depicted in Figures 6–8;

(iii) the resonance between the system transition fre-
quency ωS

ba and the substrate frequency ωj in favor
of the C(1) contribution, or ωj ± ωk in favor of the
C(±) contribution;

(iv) the density of states for a specific substrate mode j
measured by the thermal occupation number n̄j in
equations (24–26).

Note that for pure T2-dephasing the required inter-
action spectra are the Cαα′(0) ≈ C

(−)
αα′ (0) contributions

which are determined by Bαα′(j, j) and n̄j [cf. Eq. (26)].
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Table 3. T1-relaxation rates γab1 [Eq. (29)] at 200 K as well as
the separate contributions of the one- and two-phonon tran-
sitions. The upper/lower part corresponds to the inter-/intra-
well transitions. The Bloch T1-relaxation rates [cf. Eq. (31)] are
Γa = 0.0, 0.36, 6.4, 150, 590 ps−1; for a = 0, ..., 4, respectively.
See text for details.

a← b ωS
ba γab1 separate contributions to γab1

(cm−1) (ps−1) C(1) C(+) C(−)

0← 1 876 0.35 1.0(18:1.0) 0.0 0.0

0← 3 2250 0.77 0.29(18:0.28) 0.71(11+18:0.32) 0.00

1← 2 613 0.041 0.41(22:0.15) 0.56(24+25:0.26) 0.03

1← 4 1510 3.3 0.67(9:0.61) 0.33(29+29:0.16) 0.00

2← 3 760 10 1.0(18:0.92) 0.0 0.0

3← 4 136 12 0.86(25:0.57) 0.05 0.09

0← 2 1489 5.4 0.73(18:0.54) 0.26(17+21:0.09) 0.01

0← 4 2386 6.5 0.83(18:0.80) 0.17(29+29:0.11) 0.00

1← 3 1374 140 0.95(11:0.87) 0.05 0.00

2← 4 896 570 0.99(18:0.99) 0.01 0.00

In the next subsection, these four factors will be investi-
gated to arrive at a molecular picture for the T1-relaxation
and pure T2-dephasing at the representative temperature
of T = 200 K.

5.3 Molecular mechanism of dissipation

5.3.1 T1-relaxation rates

Let us start with the molecular details of the T1-relaxation
rate γab1 [cf. Eq. (29)]. Table 3 presents the calculated val-
ues of the T1-relaxation rates γab1 [Eq. (29)] for a, b =
0, ..., 4 at the temperature of 200 K. The corresponding
transition frequencies ωS

ba in the reactive system are also
given. The γab1 (with a > b) which are not shown ex-
plicitly can be evaluated via the detailed-balance relation
[Eq. (30)]. We also give the Bloch T1-relaxation rates Γa
[Eq. (31)] associated with the individual levels. The left
three columns of Table 3 list the separate contributions
to γab1 assuming that the substrate interaction spectrum
Cαα′ in equation (29) is divided into its three components,
C

(1)
αα′ , C

(+)
αα′ , and C

(−)
αα′ , respectively [cf. Eq. (23)]. In order

to elucidate which modes contribute most to theses co-
efficients we give the mode index as well as the respec-
tive relative contribution as superscripts. Consider, for
example, the 0 ← 2 transition which has a total rate of
γ02

1 = 5.4 ps−1. The contribution of ω18 is 54% (via C(1))
and that of ω17 and ω21 is 9% (via C(+)). Note that the
small contribution of C(−) to the T1-rates shown in Ta-
ble 3 is not a general rule. In fact, the C(−)’s contribution
to γ35

1 which is not listed is 76%. The upper and lower
parts of Table 3 are for the inter-well and intra-well tran-
sitions, respectively (cf. Fig. 5). The overall T1-rates γab1

for the inter-well transitions are smaller than those for the
intra-well transitions. As will be shown later this behavior
is just opposite to that of the pure T2-dephasing.

Table 4. Pure T2-dephasing rates γab2 [Eq. (33)] at 200 K. The
upper/lower part corresponds to the inter-/intra-well transi-
tions. Given are also the separate contributions from the indi-
cated substrate modes via the degenerate pump-dump (C(−))
coupling.

a← b γab2 jth mode contribution

(ps−1) j = 25 29 36 37

0← 1 3200 0.61 0.08 0.23 0.01

0← 3 2200 0.57 0.12 0.18 0.05

1← 2 3200 0.62 0.08 0.21 0.01

1← 4 3900 0.51 0.04 0.24 0.14

2← 3 2100 0.60 0.11 0.17 0.04

3← 4 2300 0.57 0.07 0.24 0.04

0← 2 5.0 0.02 0.10 0.21 0.58

0← 4 410 0.00 0.03 0.03 0.93

1← 3 350 0.23 0.00 0.13 0.62

2← 4 350 0.00 0.02 0.06 0.91

The above details of the state-to-state T1-rates can be
explained as resulting from the interplay between the four
factors listed at the end of the last subsection. Factor (i),
i.e. the overlap between |a〉 and |b〉 accounts for the overall
large T1-rates for the intra-well transition (lower part of
Tab. 3) in comparison with those for the inter-well transi-
tion (upper part of Tab. 3). Factor (ii), i.e. the substrate
interaction strength accounts for the overall importance
of substrate modes with j = 18, 25 and 29 (cf. Tab. 2)
in many of the C(1)’s and C(+)’s contributions to γab1 .
The molecular pictures of these strong coupling substrate
modes were described in Section 4.2 and Figures 6 and
7a. Factor (iii), i.e. resonance accounts for other specific
substrate modes, such as ω24 + ω25 = 612 cm−1 match-
ing well with ωS

21 = 613 cm−1 (for 1 ← 2), contributing
significantly to specific state-to-state T1-relaxations (cf.
Tab. 3). Factor (iv), i.e. n̄j affects the values of γab1 but in-
troduces no substrate mode-selectivity in the present case
of the T1-relaxation rates. However, it will be shown to
be an important factor for the substrate mode-selectivity
in γab2 .

5.3.2 Pure T2-dephasing rates

We now turn to the molecular origin of the pure T2-depha-
sing rates γab2 . Table 4 presents the calculated γab2 ; with
a, b = 0, ..., 4 at the temperature of 200 K, together with
the individual contributions from the four important sub-
strate modes j = 25, 29, 36, and 37. The table is also par-
titioned into inter-well (upper part) and intra-well (lower
part) transitions. The presented pure-T2 rates can be an-
alyzed in terms of three related aspects:

(a) the molecular patterns of important substrate normal
modes;

(b) the physical picture of pure-dephasing between two
states originating from the fluctuation of the associ-
ated transition frequency;
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(c) the interplay among the factors (i–iv) described earlier
in Section 5.2.

First, we observe that the overall pure-dephasing rates
for the inter-well transitions (upper part of Tab. 4) are
much larger than their intra-well counterparts (lower part
of Tab. 4). This behavior can be understood in terms of
the ∝ (W aa

α − W bb
α ) dependence of the dephasing rates

which gives a larger contribution for inter-well transition
frequency fluctuations. This behavior is just opposite to
the T1-relaxation case due to factor (i) (overlap between
wave functions) which favors W ab

α in equation (29) for the
T1-rates, but discriminates against W aa

α −W bb
α in equa-

tion (33) for the T2-rates. As a result, the inter-well γ2

(γ1) rates are larger (smaller) than the intra-well coun-
terparts (comp. Tabs. 4 and 3). Detailed analysis shows
that pure T2-dephasing is almost exclusively coming from
the coupling of the system’s x-coordinate; i.e., of Wα with
α = (1, 0) and (2, 0).

We now turn to the four important substrate modes
j = 25, 29, 36, and 37 that contribute in total over 90% to
the γab2 for each a↔ b pair. As mentioned earlier, pure de-
phasing stems almost exclusively from the Rayleigh pump-
dump contribution due to each individual substrate nor-
mal mode; i.e., from the j = k terms in equation (26) for
C

(−)
αα′(0) ≈ Cαα′(0) which contributes to γab2 [Eq. (33)].

Both the values of Bαα(j, j) [factor (ii)] and the ther-
mal occupation number n̄j [factor (iv)] play a role [cf.
Eq. (26)]. In fact, as far as the values of Bαα(j, j)(n̄j+1)n̄j
are concerned (cf. Tab. 2), mode 37 > mode 29 > mode
36 > mode 25. Other modes, including j = 18 and 30 [cf.
Figs. 6a and 7b] which have significant values of Bαα(j, j),
are at least one order of magnitude smaller in terms of
Bαα(j, j)(n̄j + 1)n̄j at the considered temperature.

The fact that mode j = 37 gives the dominant con-
tribution to the intra-well pure dephasing may be under-
stood using the above reasoning. However, the observa-
tion that the dominant inter-well pure dephasing substrate
modes are j = 25 and 36, rather than j = 29 and 37, which
have Bαα(j, j)(n̄j + 1)n̄j values larger than those of the
former two modes, is surprising. Mathematically, it results
from the fact that the former/latter two modes are sub-
ject to enhancement/cancellation as the summations in
equation (33) are carried out.

To understand this seemingly peculiar observation on
the selective enhancement/cancellation, let us examine the
molecular motions in of modes j = 25 and 36 versus those
of modes j = 29 and 37, in order to establish a physi-
cal picture of pure dephasing. The substrate normal mode
j = 25 [Fig. 6b] involves an in-plane quasi-rotation of all
atoms, except for the counter-clockwise motion of the Cl.
The substrate normal mode j = 36 [Fig. 8a] involves an
out-of-plane motion of the substrate atoms and the z-
direction motion of the proton parallel to one O atom
and anti-parallel to the other O atom. Both modes 25 and
36 have a large bias in relation to the two wells, leading to
enhanced contributions to inter-well pure dephasing. The
mode j = 37 [Fig. 8b] is much like the mode j = 36, but
does not involve large motion of the proton in z-direction.
As a result, the mode j = 37 has no bias against different

wells, which implies a cancellation as the summations in
equation (33) is carried out for the inter-well pure dephas-
ing rates. The mode j = 29 [Fig. 7a] involves essentially
the motion of the proton in z-direction with also no bias
against the two O atoms, and hence the two wells. There-
fore, the modes 37 and 29 do not contribute as much as
the modes 25 and 36 to the inter-well pure dephasing, in
spite of the mode 37 being the dominant contribution to
the intra-well pure dephasing.

6 Summary

We have presented the complete procedure for the quan-
tum chemical construction of the Hamiltonian and the
relaxation rates for proton transfer reactions in large mo-
lecules, exemplified via an isolated 3-chlorotropolone mo-
lecule at finite temperature. This was done by combining
the all-Cartesian system-plus-substrate Hamiltonian con-
struction (Sect. 2) with a quantum dissipation formulation
(Appendix A). For the intramolecular PT in 3CTR, we
treated the (x, y)-coordinates of the reactive H atom as the
reduced system, and the remaining 37 internal substrate
modes as the intramolecular bath which was assumed to
be Markovian. The reduced reaction system Hamiltonian
(Sect. 3), the bath interaction spectra (Sect. 4), and the
state-to-state T1-relaxation and pure T2-dephasing rate
constants (Sect. 5) can thus been identified at a high level
of quantum chemistry.

It should be emphasized that treating the intramolec-
ular PT in an isolated molecule in terms of dissipation
dynamics is an approximation due to the finite num-
ber of substrate degrees of freedom. However, the result-
ing information, such as the temperature-dependent effec-
tive reaction Hamiltonian and T1- and T2-rates, support
the semi-quantitative nature of our study of the primary
dynamical event of interest in the considered molecule.
More importantly, the present method allows to identify
important collective motions (i.e., the substrate normal
modes) individually in terms of their coupling strengths
and their specific effects on the population or/and phase
dynamics in the reduced reaction system. In particular, we
have demonstrated (cf. Sect. 5.3.2) the importance of bi-
quadratic system-substrate couplings in determining the
state-to-state phase dynamics (in terms of pure T2-depha-
sing). To our knowledge, such a molecular level analysis
of pure dephasing has never been carried out before for a
PT system.

The electronic spectroscopies applied to tropolone
derivatives so far have been focused on certain optical
active collective modes, where the information of PT
is deduced indirectly via its effects such as frequency-
shift and line-splitting on the normal modes [28–34]. A
possible approach to the direct measurement of ground
state PT is Raman or multi-dimensional vibrational spec-
troscopy [50]. On the other hand, ultrafast mid-IR four-
wave mixing studies on non-reactive hydrogen-bonded
complexes have been reported recently [36,37]. In this
respect it is interesting to note that for the hydrogen
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bonded network in HOD/D2O [36] as well as for the in-
tramolecular medium strong hydrogen bond in phthalic
acid monomethylester in CCl4 [37], photon echo data re-
vealed pure dephasing times below 100 fs. In the latter
case it was concluded that intramolecular (anharmonic
coupling) as well as solvent (homogeneous broadening) ef-
fects could be responsible for this short dephasing time.
The present calculation suggests that a system with an
intramolecular hydrogen-bond can in principle exhibit ul-
trafast pure dephasing even in the gas phase.

A novel feature of this work is the establishment of
the correlation between the pattern of substrate mode vi-
brations and the inter-well/intra-well pure dephasing pro-
cesses they induce. This correlation together with its T1-
relaxation counterpart was discussed in detail in Section 5
and highlighted in Tables 3, 4, and Figures 6–8. The modes
25 and 37 [Figs. 6b and 8b] are identified as the substrate
motions most responsible for the inter-well and intra-well
pure dephasing processes, respectively, in the PT in 3CTR
at T = 200 K (cf. Tab. 4). The mode 25 (37) is also the
lowest frequency in-plane (out-of-plane) substrate mode,
whereas the PT corresponds to the reactive H atom’s
in-plane motion. The seemingly peculiar substrate mode-
selectivity in the inter-well/intra-well pure dephasing de-
scribed above was elucidated in detail in Section 5.3.2
via the patterns of substrate motion, in relation to the
physical picture and the formulation [Eq. (33)] of pure
dephasing.

In terms of the overall coupling strength (cf. Tab. 2),
the most important substrate motion is due to mode 18
[Fig. 6a]. This mode has promoting character for the PT.
It’s exceptional role is in accord with the general picture
of PT reactions [9,51,52]. It should be emphasized that
our partitioning of the total Hamiltonian into a system
and a bath part was to some extent guided by the sep-
aration into anharmonic and harmonic motions. Keeping
the system part two-dimensional facilitated a straightfor-
ward analysis of the resulting relaxation rates with their
microscopic explanation being more important than their
absolute values. The promoting mode j = 18 would, of
course, be the primary candidate for inclusion into the
system part. The strong coupling to mode 18 also raises
the question whether this mode can be treated in the har-
monic limit, in particular in the E2 potential well. One
way of dealing with this problem would be to stay with
the harmonic approximation but to use a flexible substrate
reference geometry [7] which would reduce the overall force
on the substrate atoms. Alternatively, mode 18, for exam-
ple, could be considered explicitly in the quantum chem-
istry calculation as well which would account for the full
anharmonicity of this degree of freedom.
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Appendix A: Bloch–Redfield theory

The Redfield equation of motion can be expressed in the
following algebraic form [44,46]:

ρ̇ = −i[H, ρ]− 1
2

∑
α

[Wα, W̃αρ− ρW̃ †α], (34)

W̃α ≡
∑
α′

Cαα′(−L)Wα′ . (35)

Here, H is the effective reaction Hamiltonian whose PES
in the Cartesian coordinates is given by equation (10),
Wα is defined in equation (16), while Cαα′(−L) is a
function of the reduced system Liouvillian operator L ≡
[H, •], defined by the bath interaction spectrum Cαα′(ω)
[Eq. (21)]. As the spectrum is real [cf. Eqs. (23–28)],
we have W̃ †α =

∑
α′ Cαα′(L)Wα′ . By using the spectral

detailed-balance relation, equation (22), one can easily
show that ρeq ∝ exp(−βH) is a stationary solution to
the Redfield equation (34).

The second term in equation (34) can be recast in the
form, −Rρ, where R is the dissipation superoperator or
tensor. The Redfield dissipation tensor elements in the H-
eigenstate {|a〉}-representation can be obtained as [46]

Rab,a′b′ = (Kab,a′b′ +K∗ba,b′a′)/2, (36)

Kab,a′b′ =
∑
α

[δbb′(WαW̃α)aa′ −W b′b
α W̃ aa′

α ]. (37)

The Redfield equation, equation (34), does not preserve
the positivity [45,46] and may lead to non-physical results
of ρaa < 0, especially when the system–bath coupling is
strong.

Alternatively, one may consider the so-called secular
approximation which retains only the diagonal dissipation
tensor elements, Raa,bb and Rab,ab. This approximation
amounts to the following Bloch equations (in the diagonal
H-representation):

ρ̇aa = −i[H, ρ]aa − Γaρaa +
∑
b6=a

γab1 ρbb, (38)

ρ̇ab = −i[H, ρ]ab − γ̃ab2 ρab. (39)

Here, γab1 ≡ −Raa,bb and γ̃ab2 ≡ Rab,ab, which can be
evaluated via equation (36). The rates are given explicitly
in equations (29, 32) with (33), whereas Γa is defined in
equation (31).
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8. A.E. Orel, O. Kühn, Chem. Phys. Lett. 304, 285 (1999).
9. H. Naundorf, J.A. Organero, A. Douhal, O. Kühn, J.
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(2000).
11. K. Yagi, T. Taketsugu, K. Hirao, J. Chem. Phys. 115,

10647 (2001).
12. R.B. Gerber, V. Buch, M.A. Ratner, J. Chem. Phys. 77,

3022 (1982).
13. R.B. Gerber, M.A. Ratner, V. Buch, Chem. Phys. Lett.

91, 173 (1982).
14. H.D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys.

Lett. 165, 73 (1990).
15. U. Manthe, H.D. Meyer, L.S. Cederbaum, J. Chem. Phys.

97, 3199 (1992).
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